Boundary-layer transition on a rotating cone in axial flow

Abstract
The purpose of the present paper is to investigate the structure of the laminar–turbulent transition region for the three-dimensional boundary layer along a 30° cone rotating in external axial flow. Spiral vortices, which were assumed as small disturbances in the present stability analysis, are observed experimentally in the transition region. The process of transition to a turbulent boundary layer is visualized in detail. When the ratio of rotational speed to external axial flow is increased, the critical and transition Reynolds numbers decrease remarkably. The spiral angle and the number of vortices appearing on the cone decrease as the rotational speed ratio is increased.