Murine Coronavirus Replication-Induced p38 Mitogen-Activated Protein Kinase Activation Promotes Interleukin-6 Production and Virus Replication in Cultured Cells
Open Access
- 15 June 2002
- journal article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 76 (12) , 5937-5948
- https://doi.org/10.1128/jvi.76.12.5937-5948.2002
Abstract
Analyses of mitogen-activated protein kinases (MAPKs) in a mouse hepatitis virus (MHV)-infected macrophage-derived J774.1 cell line showed activation of two MAPKs, p38 MAPK and c-Jun N-terminal kinase (JNK), but not of extracellular signal-regulated kinase (ERK). Activation of MAPKs was evident by 6 h postinfection. However, UV-irradiated MHV failed to activate MAPKs, which demonstrated that MHV replication was necessary for their activation. Several other MHV-permissive cell lines also showed activation of both p38 MAPK and JNK, which indicated that the MHV-induced stress-kinase activation was not restricted to any particular cell type. The upstream kinase responsible for activating MHV-induced p38 MAPK was the MAPK kinase 3. Experiments with a specific inhibitor of p38 MAPK, SB 203580, demonstrated that MHV-induced p38 MAPK activation resulted in the accumulation of interleukin-6 (IL-6) mRNAs and an increase in the production of IL-6, regardless of MHV-induced general host protein synthesis inhibition. Furthermore, MHV production was suppressed in SB 203580-treated cells, demonstrating that activated p38 MAPK played a role in MHV replication. The reduced MHV production in SB 203580-treated cells was, at least in part, due to a decrease in virus-specific protein synthesis and virus-specific mRNA accumulation. Interestingly, there was a transient increase in the amount of phosphorylation of the translation initiation factor 4E (eIF4E) in infected cells, and this eIF4E phosphorylation was p38 MAPK dependent; it is known that phosphorylated eIF4E enhances translation rates of cap-containing mRNAs. Furthermore, the upstream kinase responsible for eIF4E phosphorylation, MAPK-interacting kinase 1, was also phosphorylated and activated in response to MHV infection. Our data suggested that host cells, in response to MHV replication, activated p38 MAPK, which subsequently phosphorylated eIF4E to efficiently translate certain host proteins, including IL-6, during virus-induced severe host protein synthesis inhibition. MHV utilized this p38 MAPK-dependent increase in eIF4E phosphorylation to promote virus-specific protein synthesis and subsequent progeny virus production. Enhancement of virus-specific protein synthesis through virus-induced eIF4E activation has not been reported in any other viruses.Keywords
This publication has 90 references indexed in Scilit:
- Negative Regulation of Protein Translation by Mitogen-Activated Protein Kinase-Interacting Kinases 1 and 2Molecular and Cellular Biology, 2001
- Herpes Simplex Virus Type 1 Blocks the Apoptotic Host Cell Defense Mechanisms That Target Bcl-2 and Manipulates Activation of p38 Mitogen-Activated Protein Kinase To Improve Viral ReplicationJournal of Virology, 2001
- The Mitogen-Activated Protein Kinase Signal-Integrating Kinase Mnk2 Is a Eukaryotic Initiation Factor 4E Kinase with High Levels of Basal Activity in Mammalian CellsMolecular and Cellular Biology, 2001
- Scandinavian Journal of Gastroenterology: A New MillenniumScandinavian Journal of Gastroenterology, 2000
- eIF4 Initiation Factors: Effectors of mRNA Recruitment to Ribosomes and Regulators of TranslationAnnual Review of Biochemistry, 1999
- PKR, apoptosis and cancerThe International Journal of Biochemistry & Cell Biology, 1999
- Murine Hepatitis Virus Strain 3 Induces the Macrophage Prothrombinase fgl-2 through p38 Mitogen-activated Protein Kinase ActivationJournal of Biological Chemistry, 1998
- HOW CELLS RESPOND TO INTERFERONSAnnual Review of Biochemistry, 1998
- The Phosphorylation of Eukaryotic Initiation Factor eIF4E in Response to Phorbol Esters, Cell Stresses, and Cytokines Is Mediated by Distinct MAP Kinase PathwaysJournal of Biological Chemistry, 1998
- Coronavirus JHM: Intracellular Protein SynthesisJournal of General Virology, 1981