Scaling the Physiological Effects of Exposure to Radiofrequency Electromagnetic Radiation: Consequences of Body Size
- 1 January 1984
- journal article
- research article
- Published by Taylor & Francis in International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine
- Vol. 46 (4) , 387-397
- https://doi.org/10.1080/09553008414551571
Abstract
We have demonstrated that a comparative analysis of the physiological effects of exposure of laboratory mammals to radiofrequency electromagnetic radiation (RFR) may be useful in predicting exposure thresholds for humans if the effect is assumed to be due only to heating of tissue. The threshold specific absorption rate (SAR) necessary to affect a thermoregulatory parameter shows an inverse and linear relationship to body mass. The inverse relationship between threshold SAR and body mass is attributed to a surface area: body mass relationship. In comparison to small mammals, relatively large mammals have a reduced capacity to dissipate an internal heat load passively, and are therefore physiologically more sensitive to RFR exposure. The threshold for a thermoregulatory response depends on the type of response measured, species, ambient temperature, etc. By extrapolation, it can be shown that a SAR of only 0·2–0·4 W/kg is required to promote a thermoregulatory response in a mammal with a body mass of 70 kg (e.g. weight of adult human). The specific absorption rate bioeffects data collected from laboratory mammals can be related by means of a simple power formula: threshold SAR (W/kg) = aMb, where M is body mass in kg, a is a constant and b is equal to approximately −0·5. Through this equation we have illustrated that a threshold SAR measured in a species weighing 100 g would be 10 times greater than that of a species weighing 10 000 g. Accordingly, a relatively low SAR that is physiologically ineffective in small mammals may be stressful to larger species.Keywords
This publication has 26 references indexed in Scilit:
- Ventilatory frequency of mouse and hamster during microwave-induced heat exposureRespiration Physiology, 1984
- Decreased Body Weight in Fetal Rats After Irradiation With 2450-MHz (CW) MicrowavesHealth Physics, 1984
- A Suggested Limit for Population Exposure to Radiofrequency RadiationHealth Physics, 1983
- Technical Note: On Changes in Evaporative Heat Loss that Result from Exposure to Nonionizing Electromagnetic RadiationJournal of Microwave Power, 1983
- Effects of Ambient Temperature and Exposure to 2450-MHz Microwave Radiation on Evaporative Heat Loss in the Mouse*Journal of Microwave Power, 1982
- Observations of Rat Fetuses after Irradiation with 2450-MHz (CW) MicrowavesJournal of Microwave Power, 1981
- Induction of calcium‐ion efflux from brain tissue by radio‐frequency radiation: Effects of modulation frequency and field strengthRadio Science, 1979
- Observations of Mouse Fetuses After Irradiation With 2.45 GHz MicrowavesHealth Physics, 1978
- Behavioral and thermal effects of microwave radiation at resonant and nonresonant wavelengthsRadio Science, 1977
- Heat storage regulation in exercise during thermal transientsJournal of Applied Physiology, 1976