Sliding Window Adaptive SVD Algorithms

Abstract
The singular value decomposition (SVD) is an important tool for subspace estimation. In adaptive signal processing, we are especially interested in tracking the SVD of a recursively updated data matrix. This paper introduces a new tracking technique that is designed for rectangular sliding window data matrices. This approach, which is derived from the classical bi-orthogonal iteration SVD algorithm, shows excellent performance in the context of frequency estimation. It proves to be very robust to abrupt signal changes, due to the use of a sliding window. Finally, an ultra-fast tracking algorithm with comparable performance is proposed.

This publication has 30 references indexed in Scilit: