Subunit Composition Determines the Single Channel Kinetics of the Epithelial Sodium Channel
Open Access
- 1 October 1998
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 112 (4) , 423-432
- https://doi.org/10.1085/jgp.112.4.423
Abstract
We have further characterized at the single channel level the properties of epithelial sodium channels formed by coexpression of α with either wild-type β or γ subunits and α with carboxy-terminal truncated β (βT) or γ (γT) subunits in Xenopus laevis oocytes. αβ and αβT channels (9.6 and 8.7 pS, respectively, with 150 mM Li+) were found to be constitutively open. Only upon inclusion of 1 μM amiloride in the pipette solution could channel activity be resolved; both channel types had short open and closed times. Mean channel open probability (Po) for αβ was 0.54 and for αβT was 0.50. In comparison, αγ and αγT channels exhibited different kinetics: αγ channels (6.7 pS in Li+) had either long open times with short closings, resulting in a high Po (0.78), or short openings with long closed times, resulting in a low Po (0.16). The mean Po for all αγ channels was 0.48. αγT (6.6 pS in Li+) behaved as a single population of channels with distinct kinetics: mean open time of 1.2 s and closed time of 0.4 s, with a mean Po of 0.6, similar to that of αγ. Inclusion of 0.1 μM amiloride in the pipette solution reduced the mean open time of αγT to 151 ms without significantly altering the closed time. We also examined the kinetics of amiloride block of αβ, αβT (1 μM amiloride), and αγT (0.1 μM amiloride) channels. αβ and αβT had similar blocking and unblocking rate constants, whereas the unblocking rate constant for αγT was 10-fold slower than αβT. Our results indicate that subunit composition of ENaC is a main determinant of Po. In addition, channel kinetics and Po are not altered by carboxy-terminal deletion in the β subunit, whereas a similar deletion in the γ subunit affects channel kinetics but not Po.Keywords
This publication has 23 references indexed in Scilit:
- Regulation of Na+channels by luminal Na+in rat cortical collecting tubuleThe Journal of Physiology, 1998
- Diversity of Channels Generated by Different Combinations of Epithelial Sodium Channel SubunitsThe Journal of general physiology, 1997
- Identification of Amino Acid Residues in the α, β, and γ Subunits of the Epithelial Sodium Channel (ENaC) Involved in Amiloride Block and Ion PermeationThe Journal of general physiology, 1997
- Gating of Na channels in the rat cortical collecting tubule: effects of voltage and membrane stretch.The Journal of general physiology, 1996
- Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na+ channelCell, 1995
- Hypertension caused by a truncated epithelial sodium channel γ subunit: genetic heterogeneity of Liddle syndromeNature Genetics, 1995
- A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system.Proceedings of the National Academy of Sciences, 1995
- Liddle's syndrome: Heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channelCell, 1994
- Amiloride-sensitive epithelial Na+ channel is made of three homologous subunitsNature, 1994
- Patch clamp measurements onXenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channelsPflügers Archiv - European Journal of Physiology, 1986