A Model of the Multicathode-Spot Vacuum Arc
- 1 January 1983
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Plasma Science
- Vol. 11 (3) , 138-145
- https://doi.org/10.1109/tps.1983.4316241
Abstract
A model is proposed for the multicathode-spot (MCS) vacuum arc. A zero-order model is filrst constructed, whereby the interelectrode plasma is produced by the multitude of cathode spots, and flows to the anode upon which it condenses. The electron density is calculated by assuming that the plasma is uniform within a cylinder bounded by the electrodes and using expenmental data for the ionic velocities and ion current fraction obtained in single cathode spot arcs. The electron density thus obtained is proportionate to the current density, and is equal to 5 × 1020 m-3 in the case of a 107-A/m2 Cu arc. The model predictions are a factor of 3-4 lower than measured values. First-order perturbations to the zero-order model are considered taking into account inelastic electron-ion collisions, plasma-macroparticle interactions, the interaction of the self-magnetic field with the plasma and electric current flows, and the interaction with the anode. Inelastic collisions tend to increase the ionicity of the plasma as a function of distance from the cathode, in agreement with spectroscopic observations. Macroparticles are heated by ion impact until they have significant evaporation rates. The vapor thus produced is ultimately ionized, and most probably accounts for the discrepancy between the zero-order prediction of electron densities and the measured values. Constrictions near the anode in both the plasma and electric current flows have been calculated. An overabundant electron current supply forces the anode to assume a negative potential with respect to the adjacent plasma.Keywords
This publication has 20 references indexed in Scilit:
- The interaction between plasma and macroparticles in a multi-cathode-spot vacuum arcJournal of Applied Physics, 1981
- On sputtering in vacuum arcsJournal of Physics D: Applied Physics, 1979
- Electron density measurements in vacuum arcs at anode spot formation thresholdJournal of Applied Physics, 1979
- Secondary electron emission by multiply charged ions and its magnitude in vacuum arcsJournal of Physics D: Applied Physics, 1977
- Components of cathode erosion in vacuum arcsJournal of Physics D: Applied Physics, 1976
- Study of electrode products emitted by vacuum arcs in form of molten metal particlesJournal of Applied Physics, 1975
- Interferometric measurement of electron and vapor densities in a high-current vacuum arcJournal of Applied Physics, 1974
- Plasma expansion as a cause of metal displacement in vacuum-arc cathode spotsJournal of Applied Physics, 1974
- High-current vacuum arcs. Part 2: Theoretical outlineProceedings of the Institution of Electrical Engineers, 1970
- Analysis of the Electrode Products Emitted by dc Arcs in a Vacuum AmbientJournal of Applied Physics, 1969