Mutations at Positions 13 and/or 914 in Escherichia coli 16 S Ribosomal RNA Interfere with the Initiation of Protein Synthesis

Abstract
Mutations at positions 13 (U-->A) and/or 914 (A-->U) of Escherichia coli 16S rRNA severely affect cell growth and protein synthesis, when expressed in vivo in a vector encoding an rrn operon under control of an inducible promoter. In vitro assays using extension inhibition indicate that the mutations interfere with the formation of the 30S translational initiation complex, which can account for their effect on cell growth. The two mutations destabilize an adjacent pseudoknot helix in which bases 17-19 pair to bases 916-918. This was shown by the increased binding of an oligodeoxyribonucleotide probe complementary to one strand of the pseudoknot helix, and by the increased reactivity to kethoxal of base G917 within this helix. These observations suggest that this pseudoknot helix participates in the formation of the 30S translational initiation complex.