Photochemical inactivation of viruses and bacteria in platelet concentrates by use of a novel psoralen and long‐wavelength ultraviolet light

Abstract
BACKGROUND: A photochemical treatment process has been developed for the inactivation of viruses and bacteria in platelet concentrates. This process is based on the photochemical reaction of a novel psoralen, S‐ 59, with nucleic acids upon illumination with long‐wavelength ultraviolet light (UVA, 320–400 nm). STUDY DESIGN AND METHODS: High levels of pathogens were added to single‐donor platelet concentrates containing 3 to 5 × 10(11) platelets in 300 mL of 35‐percent autologous plasma and 65‐percent platelet additive solution. After treatment with S‐59 (150 microM) and UVA (0–3 J/cm2), the infectivity of each pathogen was measured with established biologic assays. In vitro platelet function after photochemical treatment was evaluated during 7 days of storage by using a panel of 14 assays. The in vivo recovery and life span of photochemically treated platelets were evaluated after 24 hours of storage in a primate transfusion model. RESULTS: The following levels of pathogen inactivation were achieved:>10(6.7) plaque‐forming units (PFU) per mL of cell‐free human immunodeficiency virus (HIV),>10(6.6) PFU per mL of cell‐associated HIV,>10(6.8) infectious dose (ID50) per mL of duck hepatitis B virus (a model for hepatitis B virus),>10(6.5) PFU per mL of bovine viral diarrhea virus (a model for hepatitis C virus),>10(6.6) colony‐forming units of Staphylococcus epidermidis, and>10(5.6) colony‐forming units of Klebsiella pneumoniae. Expression of integrated HIV was inhibited by 0.1 microM S‐ 59 and 1 J per cm2 of UVA. In vitro and in vivo platelet function were adequately maintained after antiviral and antibacterial treatment. CONCLUSION: Photochemical treatment of platelet concentrates offers the potential for reducing transfusion‐related viral and bacterial diseases.