Abstract
A Hamiltonian system of nonlinear dispersive waves is used as a basis for generalizing the test-wave model to a set of resonantly interacting waves. The resonant test field (RTF) is shown to obey a nonlinear generalized Langevin equation in general. In the Markov limit a Fokker-Planck equation is obtained and the exact steady-state solution is determined. An algebraic expression for the power spectral density is obtained in terms of the number of resonantly interacting waves (n) in the RTF, the interaction strength (Vk), and the dimensionality of the wave field (d). For gravity waves on the ocean surface a k4 spectrum is obtained, and for capillary waves a k8 spectrum, both of which are in essential agreement with data.