Viscoelastic Properties of Rubberlike Composite Propellants and Filled Elastomers

Abstract
The mechanical properties of rubberlike composite propellants and similar filled elastomers are determined largely by the volume fraction of filler, the visco-elastic properties of the binder, and the interactions between the binder and filler particles. The ratio of the quasi-equilibrium modulus of the composite to that for the unfilled elastomer increases with the volume fraction of the filler, apparently according to an equation of the form proposed by Eilers and Van Dyck. However, the same ratio for the dynamic storage modulus decreases as the frequency is increased or the temperature is decreased. The time-dependent tensile properties can be characterized by stress-strain curves measured at different strain rates and temperatures. Both the small deformation and ultimate properties can be represented by master curves, which are functions only of the experimental time scale, along with a temperature function which is a near-universal function of the glass temperature. Propellants under constant loads initially exhibit creep which is qualitatively similar to that of unfilled elastomers, but subsequently dewetting of the filler particles may begin and this causes the deformation to increase exponentially with time. A discussion is given of the use of Poisson's ratio, defined in terms of Hencky strain and measured as a function of extension, to indicate the initiation of dewetting and the subsequent volume increase.