Spin-dependent Parton Distributions from Polarized Structure Function Data

Abstract
In the past year, polarized deep inelastic scattering experiments at CERN and SLAC have obtained structure function measurements off proton, neutron and deuteron targets at a level of precision never before achieved. The measurements can be used to test the Bjorken and Ellis-Jaffe sum rules, and also to obtain information on the parton distributions in polarized nucleons. We perform a global leading-order QCD fit to the proton deep inelastic data in order to extract the spin-dependent parton distributions. By using parametric forms which are consistent with theoretical expectations at large and small $x$, we find that the quark distributions are now rather well constrained. We assume that there is no significant intrinsic polarization of the strange quark sea. The data are then consistent with a modest amount of the proton's spin carried by the gluon, although the shape of the gluon distribution is not well constrained, and several qualitatively different shapes are suggested. The spin-dependent distributions we obtain can be used as input to phenomenological studies for future polarized hadron-hadron and lepton-hadron colliders.

This publication has 0 references indexed in Scilit: