Enhanced Thermal Tolerance in a Mutant of Arabidopsis Deficient in Palmitic Acid Unsaturation

Abstract
A mutant of Arabidopsis thaliana, deficient in the activity of a chloroplast .omega. 9 fatty acid desaturase, accumulates high amounts of palmitic acid (16:0) and exhibits an overall reduction in the level of unsaturation of chloroplast lipids. Under standard conditions the altered membrane lipid composition had only minor effects on growth rate of the mutant, net photosynthetic CO2 fixation, photosynthetic electron transport, or chloroplast ultrastructure. Similarly, fluorescence polarization measurements indicated that the fluidity of the membranes was not significantly different in the mutant and the wild type. However, at temperatures above 28.degree.C, the mutant grew more rapidly than the wild type suggesting that the altered fatty acid composition enhanced the thermal tolerance of the mutant. Similarly, the chloroplast membranes of the mutant were more resistant than wild type to thermal inactivation of photosynthetic electron transport. These observations lend support to previous suggestions that chloroplast membrane lipid composition may be an important component of the thermal acclimation response observed in many plant species which are photosynthetically active during periods of seasonally variable temperature extremes.