A hierarchy of classification methods for patterns*
- 1 February 1981
- journal article
- Published by Walter de Gruyter GmbH in Zeitschrift für Kristallographie - Crystalline Materials
- Vol. 154 (3-4) , 163-187
- https://doi.org/10.1524/zkri.1981.154.3-4.163
Abstract
In the spirit of Felix Klein's “Erlangen Program” a methodical approach is developed to three levels of classification of geometric objects. These three levels are successive refinements of the classification by the crystallographic (symmetry) groups. The approach provides a systematic framework for most kinds of previously classified objects, such as dot patterns (= lattice complexes), circle or ellipse patterns (= circle packings, ellipse packings), tilings (tessellations) with equivalent tiles (or edges, or vertices), and many others.Keywords
This publication has 11 references indexed in Scilit:
- Color groupsDiscrete Applied Mathematics, 1979
- Incidence symbols and their applicationsProceedings of Symposia in Pure Mathematics, 1979
- Isohedral tilings of the plane by polygonsCommentarii Mathematici Helvetici, 1978
- Isotoxal tilingsPacific Journal of Mathematics, 1978
- Complexes for crystallographic point groups, rod groups and layer groupsZeitschrift für Kristallographie, 1978
- The ninety-one types of isogonal tilings in the planeTransactions of the American Mathematical Society, 1978
- The eighty-one types of isohedral tilings in the planeMathematical Proceedings of the Cambridge Philosophical Society, 1977
- Thermal diffuse X-ray scattering for small samples and small coherent scattering domainsActa Crystallographica Section A, 1975
- Die Gitterkomplexe der EbenengruppenActa Crystallographica Section A, 1968
- XXIV. Die topologische Strukturanalyse. I.Zeitschrift für Kristallographie - Crystalline Materials, 1927