Time-dependent numerical simulation of ablation-controlled arcs

Abstract
A zero-dimension (0-D) time-dependent code (ZEUS) developed to simulate ablation-controlled arc (ACA) behavior is discussed. The code includes energy transport, equation-of-state, and electrical resistivity models. Particular attention is given to the equation-of-state and the determination of the charged state of multicomponent plasma under local thermodynamic equilibrium (LTE) conditions. The 0-D model is self-consistently solved by the fourth-order Runge-Kutta method. The numerical simulation of ZEUS was compared with both experimental and other theoretical results. Comparison with experimental results demonstrates that the numerical simulation can correctly predict the behavior of ACAs.

This publication has 10 references indexed in Scilit: