Knotting probability of a shaken ball-chain

Abstract
We study the formation of knots on a macroscopic ball chain, which is shaken on a horizontal plate at 12 times the acceleration of gravity. We find that above a certain critical length, the knotting probability is independent of chain length, while the time to shake out a knot increases rapidly with chain length. The probability of finding a knot after a certain time is the result of the balance of these two processes. In particular, the knotting probability tends to a constant for long chains.

This publication has 5 references indexed in Scilit: