Abstract
The response of a cell to its external environment requires rapid and significant alteration of protein amount, localization and/or function. This regulation involves a complex combination of processes that control synthesis, localization and degradation. All of these processes must be properly regulated and are often interrelated. Intracellular proteolysis is largely accomplished by the ubiquitin-dependent system and has been shown to be required for growth control, cell cycle regulation, receptor function, development and the stress response. Substrates subject to regulated degradation by this system include cyclins and cyclin-dependent kinase inhibitors, tumor suppressors, transcription factors and cell surface receptors. In addition, proteins that are damaged by oxidation or that are improperly folded or localized are substrates whose degradation by this system often leads to antigen presentation on the surface of the cell in the context of Class I major histocompatibility complex molecules. A very large body of work in the last fifteen years has shown that degradation by this system requires the covalent attachment of a small protein called ubiquitin and that this modification serves to direct target proteins for degradation by a 26S proteolytic particle, the proteasome. Thus, the attachment of the ubiquitin domain is of vital importance in regulating normal growth and differentiation, as well as in defending against cellular damage caused by xenobiotics, environmental insults, infection and mutation. This review focuses on the role of ubiquitination in the cellular signaling pathways that deal with these external influences.