Sim1 gene dosage modulates the homeostatic feeding response to increased dietary fat in mice
Open Access
- 1 July 2004
- journal article
- research article
- Published by American Physiological Society in American Journal of Physiology-Endocrinology and Metabolism
- Vol. 287 (1) , E105-E113
- https://doi.org/10.1152/ajpendo.00446.2003
Abstract
Haploinsufficiency of the transcription factor gene Sim1 has been previously implicated in hyperphagic obesity in humans and mice. To investigate the relation between Sim1 dosage and hyperphagia, we generated sim1-knockout mice and studied their growth and feeding behavior. Heterozygous mice weaned on standard chow consumed 14% more food per day than controls and developed obesity, hyperinsulinemia, and hyperleptinemia. The sim1 heterozygous mice were also significantly longer than controls. Heterozygous animals had modestly increased feeding efficiency, suggesting reduced energy expenditure, but voluntary wheel-running activity did not differ significantly between the two groups. We studied the effect of dietary fat on the feeding behavior of heterozygous sim1 mutant mice. The tempo and severity of weight gain were much greater in animals weaned on a high-fat diet. When acutely challenged with increased dietary fat, sim1 heterozygous mice weaned on the chow diet markedly increased their food consumption and caloric intake, whereas control mice reduced the mass of food they consumed and maintained approximately isocaloric intake. In wild-type adult mice, we detected Sim1 expression in the paraventricular and supraoptic nuclei, as previously reported in neonates, as well as in the amygdala and lateral hypothalamus, all regions implicated in feeding behavior. Our results indicate that Sim1 gene dosage modulates the homeostatic feeding response to increased dietary fat and likely plays a physiological role in the regulation of energy balance.Keywords
This publication has 31 references indexed in Scilit:
- Deletion of the SIM1 gene (6q16.2) in a patient with a Prader-Willi-like phenotypeJournal of Medical Genetics, 2002
- Disproportionate Inhibition of Feeding in Ay Mice by Certain Stressors: A Cautionary NoteNeuroendocrinology, 2000
- Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiencyJournal of Clinical Investigation, 2000
- Leptin Inhibits Bone Formation through a Hypothalamic RelayCell, 2000
- Integration of NPY, AGRP, and Melanocortin Signals in the Hypothalamic Paraventricular NucleusNeuron, 1999
- Expression Patterns of Two Murine Homologs ofDrosophila Single-MindedSuggest Possible Roles in Embryonic Patterning and in the Pathogenesis of Down Syndrome: Volume7,Number 1 (1996), pages 1–16:Molecular and Cellular Neuroscience, 1996
- De novo interstitial deletion q16.2q21 on chromosome 6American Journal of Medical Genetics, 1995
- Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brainMolecular Endocrinology, 1994
- 6q1 monosomy: a distinctive syndromeClinical Genetics, 1988
- Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the ratPhysiology & Behavior, 1981