An Experimental Determination of the Unsteady Aerodynamics in a Controlled Oscillating Cascade

Abstract
A unique supersonic inlet flow field unsteady cascade experiment is described wherein the time-dependent pressure distribution within an harmonically oscillating airfoil cascade is quantitatively determined. The torsional frequency of oscillation and the inter-blade phase angle are precisely controlled by means of on-line digital computers. The dynamic data obtained include the chordwise distribution of the unsteady pressure magnitude and its phase lag as referenced to the airfoil motion. Parameters varied include the cascade inlet Mach number, the interblade phase angle, and the reduced frequency. The time-dependent data are correlated with state-of-the-art analytical predictions.

This publication has 0 references indexed in Scilit: