Rotational State Analysis of AlH+ by Two-Photon Dissociation

Abstract
We perform ab-initio calculations needed to predict the cross-section of an experimentally accessible (1+1') resonance-enhanced multiphoton dissociation (REMPD) pathway in AlH+. Experimenting on AlH+ ions held in a radiofrequency Paul trap, we confirm dissociation via this channel with analysis performed using time-of-flight mass spectrometry. We demonstrate the use of REMPD for rotational state analysis, and we measure the rotational distribution of trapped AlH+ to be consistent with the expected thermal distribution. AlH+ is a particularly interesting species for ion trap work because of its electronic level structure, which makes it amenable to proposals for rotational optical pumping, direct Doppler cooling, and single-molecule fluorescence detection. Potential applications of trapped AlH+ include searches for time-varying constants, quantum information processing, and ultracold chemistry studies.

This publication has 0 references indexed in Scilit: