Mycobacteria-Induced TNF-α and IL-10 Formation by Human Macrophages Is Differentially Regulated at the Level of Mitogen-Activated Protein Kinase Activity

Abstract
The clinical course of mycobacterial infections is linked to the capacity of pathogenic strains to modulate the initial antimycobacterial response of the macrophage. To elucidate some of the mechanisms involved, we studied early signal transduction events leading to cytokine formation by human monocyte-derived macrophages (MDM) in response to clinical isolates of Mycobacterium avium. TNF-α production induced by M. avium was inhibited by anti-CD14 mAbs, but not by Abs against the macrophage mannose receptor. Analysis of mitogen-activated protein (MAP) kinase activation (extracellular signal-regulated kinase 1/2, p38, and c-Jun NH2-terminal kinase) showed a rapid phosphorylation of all three subfamilies in response to M. avium, which was inhibited by anti-CD14 Abs. Using highly specific inhibitors of p38 (SB203580) and MAP kinase kinase-1 (PD98059), we found that activation of the extracellular signal-regulated kinase pathway, but not of p38, was essential for the M. avium-induced TNF-α formation. In contrast, IL-10 production was abrogated by the p38 inhibitor, but not by the MAP kinase kinase-1 inhibitor. In conclusion, M. avium-induced secretion of TNF-α and IL-10 by human macrophages is differentially regulated at the level of MAP kinase activity.