Nonverbal Counting in Humans: The Psychophysics of Number Representation

Abstract
In a nonverbal counting task derived from the animal literature, adult human subjects repeatedly attempted to produce target numbers of key presses at rates that made vocal or subvocal counting difficult or impossible. In a second task, they estimated the number of flashes in a rapid, randomly timed sequence. Congruent with the animal data, mean estimates in both tasks were proportional to target values, as was the variability in the estimates. Converging evidence makes it unlikely that subjects used verbal counting or time durations to perform these tasks. The results support the hypothesis that adult humans share with nonverbal animals a system for representing number by magnitudes that have scalar variability (a constant coefficient of variation). The mapping of numerical symbols to mental magnitudes provides a formal model of the underlying nonverbal meaning of the symbols (a model of numerical semantics).