Measurements of mean initial velocities of analyte and matrix ions in infrared matrix-assisted laser desorption ionization mass spectrometry

Abstract
The mean initial velocities of analyte ions ranging in molecular weight from 1000 Da to 150 kDa and desorbed with a pulsed Er:YAG laser from various solid-state and liquid IR MALDI matrices were measured along with those of the matrix ions. Experiments with UV MALDI were performed for comparison in addition for a 2,5-dihydroxybenzoic acid preparation. Two different measurement principles were employed, (1) a delayed extraction method, relying on the initial velocity-dependent increase of flight times with delay time between laser and HV ion extraction pulse, and (2) a field-free drift method in which the first region of a two-stage ion source was varied in length and the flight times compared. The two methods yielded somewhat different values for the mean initial ion velocities. Based on a detailed discussion of the measurement principles it is suggested that the actual initial velocities of IR MALDI ions lie between the limits set by the two methods. The influences of the analyte-to-matrix ratio, laser fluence, and laser wavelength on the initial ion velocities were also investigated. Significant differences between the desorption mechanisms for liquid and solid-state matrices were observed.

This publication has 43 references indexed in Scilit: