Irregular Prime Divisors of the Bernoulli Numbers
- 1 April 1974
- journal article
- Published by JSTOR in Mathematics of Computation
- Vol. 28 (126) , 653-657
- https://doi.org/10.2307/2005943
Abstract
If p is an irregular prime, <img width="82" height="37" align="MIDDLE" border="0" src="images/img4.gif" alt="$ p < 8000$">, then the indices 2n for which the Bernoulli quotients <!-- MATH ${B_{2n}}/2n$ --> are divisible by are completely characterized. In particular, it is always true that p$"> and that <!-- MATH ${B_{2n}}/2n\;\nequiv({B_{2n + p - 1}}/2n + p - 1)\pmod {p^2}$ --> if (p,2n) is an irregular pair. As a result, we obtain another verification that the cyclotomic invariants of Iwasawa all vanish for primes <img width="82" height="37" align="MIDDLE" border="0" src="images/img10.gif" alt="$ p < 8000$">.
Keywords
This publication has 7 references indexed in Scilit:
- Note on the distribution of irregular primesAnnales Academiae Scientiarum Fennicae. Series A. I. Mathematica, 1971
- Computation of invariants in the theory of cyclotomic fieldsJournal of the Mathematical Society of Japan, 1966
- Distribution of irregular primesIllinois Journal of Mathematics, 1965
- On Some Invariants of Cyclotomic FieldsAmerican Journal of Mathematics, 1959
- Note on Irregular PrimesProceedings of the American Mathematical Society, 1954
- On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and WilsonAnnals of Mathematics, 1938
- Über die irregulären Kreiskörper derl-ten undl 2-ten EinheitswurzelnMathematische Zeitschrift, 1924