Unitary EPSCs of Corticogeniculate Fibers in the Rat Dorsal Lateral Geniculate Nucleus In Vitro

Abstract
To investigate unitary corticogeniculate excitatory postsynaptic currents (EPSCs), whole cell patch-clamp recordings were obtained from 20 principal cells in slices of the dorsal lateral geniculate nucleus (dLGN) of DA-HAN rats. EPSCs, evoked by electrical stimulation of corticogeniculate axons, had size distributions with one or more quantal peaks. Gaussian curves fitted to such distributions gave a mean quantal size ( q) of -5.0 ± 0.7 (SD) pA for the EPSCs. Paired-pulse ratio (EPSC2/EPSC1) was 3.3 ± 0.9 for stimuli separated by 40 ms. The mean quantal size was similar for facilitated EPSCs (-5.2 ± 0.8 pA), implying an increase in mean quantal content ( m). Most corticogeniculate axons were capable of releasing only one or two quanta onto individual principal cells. Mean resting release probability ( p) was low, 0.09 ± 0.04. Binomial models, with the same n but increased p, could account for both the basal and facilitated EPSC size distributions in 6/8 cells. It is suggested that the low resting efficacy of corticogeniculate synapses serves to stabilize this excitatory feedback system. The pronounced facilitation in conjunction with large convergence from many corticogeniculate cells would provide a transient, potent excitation of dLGN cells, compliant with the idea of a visually driven neuronal amplifier.