Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds
- 1 October 1986
- journal article
- research article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 52 (4) , 681-688
- https://doi.org/10.1128/aem.52.4.681-688.1986
Abstract
The reductive biodegradation of a variety of haloaromatic substrates was monitored in samples from two sites within a shallow anoxic aquifer and was compared with freshwater sediment and sewage sludge. The metabolic capacity existing in methane-producing aquifer material was very similar to that in sediment in that three of four chlorobenzoates, five of seven chlorophenols, and one of two chlorophenoxyacetate herbicides were reductively dehalogenated in both types of incubations. The 2,4-dichlorophenoxyacetate was first converted to a dichlorophenol before dehalogenation occurred. Sewage sludge microorganisms dehalogenated four of seven chlorophenols tested and degraded both phenoxyacetate herbicides by first converting them to the corresponding chlorophenols, but the microorganisms did not transform the chlorobenzoates. In general, the same suite of initial metabolites were produced from a test substrate in all types of samples, as confirmed by cochromatography of the intermediates with authentic material. Aquifer microbiota from a sulfate-reducing site was unable to significantly degrade any of the haloaromatic substrates tested. Biological removal of the sulfate in samples from this site permitted dehalogenation of a model substrate, while stimulation of methanogenesis without removal of sulfate did not. These results demonstrate that dehalogenating microorganisms were present at this site but that their activity was at least partially inhibited by the high sulfate levels.This publication has 27 references indexed in Scilit:
- Microbial metabolism of chlorophenolic compounds in ground water aquifersEnvironmental Toxicology and Chemistry, 1985
- The bacteriology of anaerobic degradation of aromatic compoundsJournal of Applied Bacteriology, 1984
- Anaerobic biodegradation of chlorophenols in fresh and acclimated sludgeApplied and Environmental Microbiology, 1984
- Anaerobic biodegradation of phenolic compounds in digested sludgeApplied and Environmental Microbiology, 1983
- Dehalogenation: A Novel Pathway for the Anaerobic Biodegradation of Haloaromatic CompoundsScience, 1982
- Anaerobic microbial degradation of diuron by pond sedimentPesticide Biochemistry and Physiology, 1982
- Degradation of selected phenylurea herbicides by anaerobic pond sedimentJournal of Environmental Science and Health, Part B, 1982
- Carbon and Electron Flow in Mud and Sandflat Intertidal Sediments at Delaware Inlet, Nelson, New ZealandApplied and Environmental Microbiology, 1980
- Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environmentsNature, 1977
- Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sedimentsApplied and Environmental Microbiology, 1977