Abstract
An unsupervised method for segmenting noisy and blurred images is proposed. A Markov random field (MRF) model is used which is robust to degradation. Since this is computationally intensive, a hierarchical distributed genetic algorithm (HDGA) is used which is unsupervised and parallel. Experimental results show that the proposed method is effective at segmenting real images.

This publication has 3 references indexed in Scilit: