Mapping genes for resistance to Verticillium albo-atrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis
- 24 April 2004
- journal article
- Published by Springer Nature in Molecular Genetics and Genomics
- Vol. 271 (5) , 522-531
- https://doi.org/10.1007/s00438-004-1010-z
Abstract
Verticillium wilt disease of potato is caused predominantly by Verticillium albo-atrum and V. dahliae . StVe1 —a putative QTL for resistance against V. dahliae —was previously mapped to potato chromosome 9. To develop allele-specific, SNP-based markers within the locus, the StVe1 fragment from a set of 30 North American potato cultivars was analyzed. Three distinct and highly diverse haplotypes can be distinguished at the StVe1 locus. These were detected in 97%, 33%, and 10% of the cultivars analyzed. We tested for haplotype association and for genetic linkage between the StVe1 haplotypes and resistance of tetraploid potato to V. albo-atrum . Moreover, field resistance was assessed in diploid populations with known molecular linkage maps in order to identify novel QTLs. Resistance QTLs against V. albo-atrum were detected on four chromosomes (2, 6, 9, and 12) at the diploid level, with one QTL on chromosome 2 contributing over 40% to the total phenotypic variation of the trait. At the tetraploid level, a significant association between the StVe1-839-C haplotype and susceptibility to the disease was detected, suggesting that resistance-related genes directed against V. albo-atrum and V. dahliae are located in the same genomic region of chromosome 9. However, on the basis of the present analysis, we cannot determine whether these genes are closely linked or if a single gene provides resistance against both Verticillium species. To assess the usefulness of the StVe1-839-C haplotype for marker-assisted selection, we subjected the resistance data to Bayesian analysis, and calculated positive (0.65) and negative (0.75) predictive values, and overall predictive accuracy (0.72). Our results indicate that tagging of additional genes for resistance to Verticillium with molecular markers will be required for efficient marker-assisted selection.Keywords
This publication has 28 references indexed in Scilit:
- First‐generation SNP/InDel markers tagging loci for pathogen resistance in the potato genomePlant Biotechnology Journal, 2003
- Structure of Linkage Disequilibrium in PlantsAnnual Review of Plant Biology, 2003
- Multiple Disease Resistance in Interspecific Hybrids of PotatoPlant Disease, 2003
- The Structure of Haplotype Blocks in the Human GenomeScience, 2002
- Haplotypes vs single marker linkage disequilibrium tests: what do we gain?European Journal of Human Genetics, 2001
- Founding clones, major contributing ancestors, and exotic progenitors of prominent North American potato cultivarsAmerican Journal of Potato Research, 1999
- DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis.Bioinformatics, 1999
- Identification of a Gene Conferring High Levels of Resistance to Verticillium Wilt in Solanum chacoensePlant Disease, 1997
- Relationship of Verticillium Wilt with Pink-Eye of Potato in MainePlant Disease, 1993
- An improved selective medium for the isolation ofVerticillium dahliaePhytoparasitica, 1975