Integrase-Specific Enhancement and Suppression of Retroviral DNA Integration by Compacted Chromatin Structure In Vitro
Open Access
- 1 June 2004
- journal article
- research article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 78 (11) , 5848-5855
- https://doi.org/10.1128/jvi.78.11.5848-5855.2004
Abstract
Integration of viral DNA into the host chromosome is an obligatory step in retroviral replication and is dependent on the activity of the viral enzyme integrase. To examine the influence of chromatin structure on retroviral DNA integration in vitro, we used a model target comprising a 13-nucleosome extended array that includes binding sites for specific transcription factors and can be compacted into a higher-ordered structure. We found that the efficiency of in vitro integration catalyzed by human immunodeficiency virus type 1 (HIV-1) integrase was decreased after compaction of this target with histone H1. In contrast, integration by avian sarcoma virus (ASV) integrase was more efficient after compaction by either histone H1 or a high salt concentration, suggesting that the compacted structure enhances this reaction. Furthermore, although site-specific binding of transcription factors HNF3 and GATA4 blocked ASV DNA integration in extended nucleosome arrays, local opening of H1-compacted chromatin by HNF3 had no detectable effect on integration, underscoring the preference of ASV for compacted chromatin. Our results indicate that chromatin structure affects integration site selection of the HIV-1 and ASV integrases in opposite ways. These distinct properties of integrases may also affect target site selection in vivo, resulting in an important bias against or in favor of integration into actively transcribed host DNA.Keywords
This publication has 50 references indexed in Scilit:
- Transcription Start Regions in the Human Genome Are Favored Targets for MLV IntegrationScience, 2003
- Second cancer case halts gene-therapy trialsNature, 2003
- HIV-1 Integration in the Human Genome Favors Active Genes and Local HotspotsCell, 2002
- Transduction of Interphase Cells by Avian Sarcoma VirusJournal of Virology, 2002
- Murine Leukemia Induced by Retroviral Gene MarkingScience, 2002
- Infection of Nondividing Cells by Rous Sarcoma VirusJournal of Virology, 2001
- Linker Histones Stabilize the Intrinsic Salt-Dependent Folding of Nucleosomal Arrays: Mechanistic Ramifications for Higher-Order Chromatin FoldingBiochemistry, 1998
- A Preferred Target DNA Structure for Retroviral Integrasein VitroJournal of Biological Chemistry, 1998
- Hybrid Trypsinized Nucleosomal Arrays: Identification of Multiple Functional Roles of the H2A/H2B and H3/H4 N-Termini in Chromatin Fiber CompactionBiochemistry, 1997
- Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1Biochemistry, 1989