Relativistic particle dynamics in a steepening magnetosonic wave

Abstract
Acceleration of both electrons and ions to relativistic energy by large amplitude magnetosonic waves is investigated by use of numerical simulation. Nonlinear effects are shown to form the saturation mechanism and limit the amplitude below the level where a particle specie can undergo unlimited acceleration, which is expected theoretically. Spiky structures appear both in density and field waveforms that are characteristics of the relativistic regime. Both electrons and ions are strongly accelerated by E l x ×B z drift and E t y field, but their resonance features versus fields are strongly different. Around the trapping time, relativistic electron solitonlike wavelets are triggered from the main wave ramp; a few mechanisms are proposed for their interpretation. Both electrons and ions are strongly heated at the expense of the wave energy. This damping in association with the large space charge effects resulting from the spiky structures is the origin of some observed saturation level in the field energy.