Functional and molecular evidence for Shaker-like K+ channels in rabbit renal papillary epithelial cell line

Abstract
The rabbit papillary epithelial cell line GRB-PAP1 was used to determine the ion transport characteristics of a model of the distal nephron and terminal collecting duct. When grown on permeable supports, monolayers developed a significant electrical resistance and a benzamil-sensitive short-circuit current, indicating that they had the property of electrogenic Na+ transport. Using the whole cell patch-clamp technique, we found that the dominant current in these cells was a slowly inactivating, time- and voltage-dependent K+ current. This current was activated by voltages more positive than -30 mV. At +30 mV, the peak outward currents were > 300 pA. The magnitude of the outward currents and their reversal potentials depended strongly on the extracellular concentration of K+ and not on the extracellular concentration of Cl-. These currents were inhibited by either tetraethylammonium, 4-aminopyridine, charybdotoxin, or dendrotoxin. These characteristics, together with the kinetics of activation and inactivation, are the general characteristics of delayed rectifier channels seen in many muscle and neuronal cells. Because many of these types of channels share sequence homology with the Shaker family of channels cloned from Drosophila, we sought to identify a molecular correlate. Using reverse transcription followed by polymerase chain reaction to amplify Shaker-like sequences, we cloned and sequenced a single 881-bp fragment. The sequence shared identity with a recently reported rabbit Shaker channel that belongs to the subclass Kv 1.2. These data show that this renal papillary epithelial cell line, which has the capability of electrogenic Na+ transport, expresses functional delayed rectifier channels.

This publication has 0 references indexed in Scilit: