Local heat-transfer coefficients and recovery factors are presented for three different cylinders in a two-dimensional subsonic air flow, with emphasis on the effect of screen-produced turbulence on these quantities. The increase in turbulent intensity so realized produced larger local heat-transfer coefficients, in a way dependent upon the location on the cylinders, through a direct increase in the heat transfer to the laminar boundary layer, through an earlier transition to turbulence, or through an alteration in the character of the separated flow. Alternatively, recovery factors were affected less, being invariant with respect to the turbulent intensity for attached boundary layer flow, but demonstrating large changes in those separated flow regions for which increased free stream turbulence produced substantial changes in the nature of the separated flow.