High Resolution Infrared Imaging of the Compact Nuclear Source in NGC4258

Abstract
We present high resolution imaging of the nucleus of NGC4258 from 1 micron to 18 microns. Our observations reveal that the previously discovered compact source of emission is unresolved even at the near-infrared resolution of about 0.2 arcsec FWHM which corresponds to about 7 pc at the distance of the galaxy. This is consistent with the source of emission being the region in the neighborhood of the purported 3.5*10^7 M_sun black hole. After correcting for about 18 mags of visual extinction, the infrared data are consistent with a F_nu \propto nu^(-1.4+/-0.1) spectrum from 1.1 micron to 18 micron, implying a non-thermal origin. Based on this spectrum, the total extinction corrected infrared luminosity (1-20 micron) of the central source is 2*10^8 L_sun. We argue that the infrared spectrum and luminosity of the central source obviates the need for a substantial contribution from a standard, thin accretion disk at these wavelengths and calculate the accretion rate through an advection dominated accretion flow to be Mdot \sim 10^(-3) M_sun/yr. The agreement between these observations and the theoretical spectral energy distribution for advection dominated flows provides evidence for the existence of an advection dominated flow in this low luminosity AGN.

This publication has 0 references indexed in Scilit: