Estimating the Depth of the Daytime Convective Boundary Layer

Abstract
Three in-situ and five remote sensing techniques for measuring the height of the daytime convective boundary layer were compared. There was, as a rule, good agreement between the different systems when the capping inversion was steep and well defined, and some variability when the stratification was not so sharply defined. Two indirect methods for estimating boundary-layer heights from the length scales of convective motions in the layer are also discussed. Abstract Three in-situ and five remote sensing techniques for measuring the height of the daytime convective boundary layer were compared. There was, as a rule, good agreement between the different systems when the capping inversion was steep and well defined, and some variability when the stratification was not so sharply defined. Two indirect methods for estimating boundary-layer heights from the length scales of convective motions in the layer are also discussed.

This publication has 0 references indexed in Scilit: