Perinatal changes in avian muscle: Implications from ultrastructure for the development of endothermy

Abstract
Endothermic heat production and the capacity to shiver develop soon after hatching in birds, permitting chicks to regulate their body temperature. Physiological studies have not clearly identified the developmental events causing this change in function. Here, we use electron microscopy to examine the development of structures involved in muscle activation, contraction, and metabolism coincident with the development of shivering thermogenesis. A stereological study was used to compare the ultrastructure of chicken iliofibularis before endothermic heat production was present (24 h before hatching) and 120 h later, when the iliofibularis had substantial capacity for shivering. Profound increases were found in the t-tubule system and terminal cisternae, mitochondrial cristae, and lipids. The number of triadic profiles increased 3.8-fold (7.6 ± 1.31/100 μm2 to 28.5 ± 2.90/100 μm2 fiber area). The surface area of cristae per mitochondrial volume doubled (12.0 ± 1.50 pm2/pm3 to 25.7 ± 1.84 μm2/μm3). Lipid droplets were rare in the iliofibularis of embryos about to hatch, but accounted for 4.4% of the muscle fiber volume in day 4 birds. We suggest that these ultrastructural changes more fully activate the iliofibularis, allow it to produce more heat both from calcium pumping and from contraction, and increase its endurance, thus permitting the muscle to be effective in thermogenesis.