DNA Strand Scission by Polycyclic Aromatic Hydrocarbon o-Quinones: Role of Reactive Oxygen Species, Cu(II)/Cu(I) Redox Cycling, and o-Semiquinone Anion Radicals,
- 1 July 1997
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 36 (28) , 8640-8648
- https://doi.org/10.1021/bi970367p
Abstract
In previous studies, benzo[a]pyrene-7,8-dione (BPQ), a polycyclic aromatic hydrocarbon (PAH) o-quinone, was found to be 200-fold more potent as a nuclease than (±)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, a suspect human carcinogen. The mechanism of strand scission mediated by naphthalene-1,2-dione (NPQ) and BPQ was further characterized using either φX174 DNA or poly(dG)·poly(dC) as the target DNA. Strand scission was extensive, dependent on the concentration of o-quinone (0−10 μM), and required the presence of NADPH (1 mM) and CuCl2 (10 μM). The production of reactive species, i.e., superoxide anion radical, o-semiquinone anion (SQ) radical, hydrogen peroxide (H2O2), hydroxyl radical (OH•), and Cu(I), was measured in the incubation mixtures. The formation of SQ radicals was measured by EPR spectroscopy under anaerobic conditions in the presence of NADPH. A Cu(II)/Cu(I) redox cycle was found to be critical for DNA cleavage. No strand scission occurred in the absence of Cu(II) or when Cu(I) was substituted, yet Cu(I) was required for OH• production. Both DNA strand scisson and OH• formation were decreased to an equal extent, albeit not completely, by the inclusion of OH• scavengers (mannitol, soduim benzoate, and formic acid) or Cu(I) chelators (bathocuproine and neocuproine). In contrast, although the SQ radical signals of NPQ and BPQ were quenched by DNA, no strand scission was observed. When calf thymus DNA was treated with PAH o-quinones, malondialdehyde (MDA) was released by acid hydrolysis. The formation of MDA was inhibited by OH• scavengers suggesting that OH• cleaved the 2‘-deoxyribose moiety in the DNA to produce base propenals. These studies indicate that for PAH o-quinones to act as nucleases, NADPH, Cu(II), Cu(I), H2O2, and OH•, were necessary and that the primary species responsible for DNA fragmentation was OH•, generated by a Cu(I)-catalyzed Fenton reaction. The genotoxicity of PAH o-quinones may play a role in the carcinogenicity and mutagenicity of the parent hydrocarbons.Keywords
This publication has 16 references indexed in Scilit:
- Relationship of human liver dihydrodiol dehydrogenases to hepatic bile-acid-binding protein and an oxidoreductase of human colon cellsBiochemical Journal, 1996
- Cytotoxicity and mutagenicity of polycyclic aromatic hydrocarbon o-quinones produced by dihydrodiol dehydrogenaseChemico-Biological Interactions, 1996
- Generation of Reactive Oxygen Species during the Enzymatic Oxidation of Polycyclic Aromatic Hydrocarbon trans-Dihydrodiols Catalyzed by Dihydrodiol DehydrogenaseChemical Research in Toxicology, 1996
- Ki‐ras oncogene mutations in tumors and DNA adducts formed by benz[j]aceanthrylene and benzo[a]pyrene in the lungs of strain A/J miceMolecular Carcinogenesis, 1993
- Base-specific binding of copper(II) to Z-DNA. The 1.3-A single crystal structure of d(m5CGUAm5CG) in the presence of CuCl2.Journal of Biological Chemistry, 1991
- Purification and Properties of Multiple Forms of Dihydrodiol Dehydrogenase from Human Liver1The Journal of Biochemistry, 1990
- Specific-locus mutations induced in eukaryotes (especially mammalian cells) by radiation and chemicals: a perspectiveMutation Research/Reviews in Genetic Toxicology, 1989
- Hydroxyl-radical-induced iron-catalysed degradation of 2-deoxyribose. Quantitative determination of malondialdehydeBiochemical Journal, 1988
- Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they "Fenton-like" or not? 1. The case of Cu+aq and Cr2+aqJournal of the American Chemical Society, 1988
- Benzo[a]pyrene-nucleic acid derivative found in vivo: structure of a benzo[a]pyrenetetrahydrodiol epoxide-guanosine adductJournal of the American Chemical Society, 1976