Abstract
The author explores Householder transforms and their applications in signal processing. He shows that these transforms can be viewed as mirror-image reflections of a data vector about any desired hyperplane. The virtue of reflections is that they are covariance invariant, that is, they preserve the covariance matrix of the data. One can construct a finite sequence of such reflections that maps a block of data vectors into a lower rectangular matrix. If only the covariance eigenvalues need to be preserved, one can map into a bidiagonal matrix. The former sparse form is useful for inverting covariance matrices and the latter is useful in finding eigenvalues of covariance matrices.

This publication has 11 references indexed in Scilit: