Abstract
Photodynamic therapy (PDT) is coming of age as an efficient alternative treatment for microbial infections, a problem which is presently aggravated by the increasingly widespread diffusion of antibiotic-resistant microbial strains. In particular, the use of red light-absorbing photosensitizers as photodynamic antimicrobial agents is characterized by various favorable features, including: (a) the broad spectrum of antimicrobial action of selected phenothiazines, porphyrins, and phthalocyanines, which promote the photosensitized inactivation of Gram(+) and Gram(−) bacteria, fungi, mycoplasma, and parasites by using one phototherapeutic protocol and mild irradiation conditions; (b) porphyrins/phthalocyanines display no appreciable toxicity in the dark at photochemically active doses; (c) microbial cell death is primarily a consequence of membrane photodamage through a typically multitarget process, which minimizes the risk of both the onset of mutagenic processes and the selection of photoresistant cells; (d) such photosensitizers act with essentially identical efficiency against both wild and antibiotic-resistant strains, whereas no selection of photoresistant microbial pathogens has been observed; (e) a combination between antibiotic-based and photodynamic therapy is possible. A typical example of phthalocyanine-sensitized photoinactivation of methicillin-resistant Staphylococcus aureus (MRSA) is provided. At present, antimicrobial PDT appears to be especially convenient for the treatment of localized infections, such as oral candidosis, periodontitis or chronic wounds.

This publication has 0 references indexed in Scilit: