Abstract
The major histocompatibility complex (MHC) has been studied extensively in humans and in mice and many methods are available for MHC typing of these well-characterized species. Studies of MHC variation in other species are ever increasing and researchers can choose one of a number of approaches for MHC typing of their species of interest. DNA sequencing is regarded as the 'gold standard' and it is frequently used for MHC typing. However, DNA sequencing is impractical when many individuals must be typed. Denaturing gradient gel electrophoresis (DGGE) offers a flexible and sensitive method for identifying and characterizing MHC alleles in any vertebrate species. This article reviews the theory and the practice of DGGE and examines the use of DGGE for MHC identification in various species. DGGE is compared to other similar techniques for MHC typing, such as single-stranded conformational polymorphism and reference strand-mediated conformational analysis. The advantages, problems, pitfalls and limitations of DGGE are considered and future perspectives on the use of DGGE for MHC typing are discussed.