Proton Transfer in Nanoconfined Polar Solvents. 1. Free Energies and Solute Position

Abstract
The reaction free energy curves for a model phenol−amine proton-transfer system in a confined CH3Cl solvent have been calculated by Monte Carlo simulations. The free energy curves, as a function of a collective solvent coordinate, have been obtained for several fixed reaction complex radial positions (based on the center-of-mass). A smooth, hydrophobic spherical cavity was used to confine the solvent, and radii of 10 and 15 Å have been considered. Quantum effects associated with the transferring proton have been included by adding the proton zero-point energy to the classical free energy. The results indicate the reaction complex position can be an important component of the reaction coordinate for proton-transfer reactions in nanoconfined solvents.
Keywords