Multiple reservoir model of neurotransmitter release by a cochlear inner hair cell

Abstract
A probabilistic model is described for transmitter release from hair cells, auditory neuron EPSP’s, and discharge patterns. The present model assumes that several reservoirs of neurotransmitter exist, having individual probability-of-release functions centered at successively higher intensities. The model accurately mimics the adaptation of successive EPSP amplitudes of the afferent neuron of the goldfish sacculus and, for mammalian auditory-nerve fibers, the adaptation of neural discharge rate, the saturation of onset and steady-state neural rate versus intensity, and the change in neural rate in response to incremental stimuli. The model also produces realistic interval and period histograms. The data shown support the hypothesis that multiple populations of neurotransmitter are involved in the afferent hair-cell synapses.