Rotational Diffusion Microrheology
- 10 January 2003
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review Letters
- Vol. 90 (1) , 018304
- https://doi.org/10.1103/physrevlett.90.018304
Abstract
Examining the rotational diffusion of a microparticle suspended in a soft material opens up exciting new opportunities for locally probing the frequency-dependent linear viscoelastic shear modulus, . We study the one-dimensional rotational diffusion of a wax microdisk in an aqueous polymer entanglement network using light streak tracking. By measuring the disk’s time-dependent mean square angular displacement, , we predict the polymer solution’s using a rotational generalized Stokes-Einstein relation. The good agreement of the predicted modulus with mechanical measurements confirms this new microrheological approach.
Keywords
This publication has 19 references indexed in Scilit:
- Osmotically driven shape-dependent colloidal separationsPhysical Review E, 2002
- Light Streak Tracking of Optically Trapped Thin MicrodisksPhysical Review Letters, 2002
- Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scatteringPhysical Review E, 2002
- Two-point microrheology and the electrostatic analogyPhysical Review E, 2001
- Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objectsPhysical Review E, 2001
- Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized lightPhysical Review E, 1999
- Particle Tracking Microrheology of Complex FluidsPhysical Review Letters, 1997
- The long-time tail of the angular-velocity autocorrelation function for a rigid Brownian particle of arbitrary centrally symmetric shapeJournal of Fluid Mechanics, 1983
- Indices of Refraction, Susceptibilities, and Correlation FunctionsThe Journal of Chemical Physics, 1971
- Mouvement Brownien d'un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidalesJournal de Physique et le Radium, 1936