Fuel smoke condensate induced DNA damage in human lymphocytes and protection by turmeric (Curcuma longa)

Abstract
Twigs-dry leaves smoke condensate (TDS) was investigated for its DNA damaging activity in human peripheral lymphocytes, by using a sensitive method, fluorescence analysis of DNA unwinding (FADU). An aqueous turmeric component (Aq.T) was studied as a protective agent. TDS at one to 100 folds dilution induced 55% DNA damage at 20 min, while 12-0-tetradecanoylphorbol-13-acetate (TPA) at 10 ng/ml induced only 25% damage. Aq.T at 300 ng/μ1 afforded 90% protection to DNA against TPA and 65% against TPA. The mechanism of Aq.T protection was investigated by using (i) inhibitors of arachidonate cascade, viz., indomethacin (28 μM), NDGA (10 μM), DBAP (36 μM), (ii) antioxidant enzymes viz., CAT (0.2 U/μl), SOD (0.6 U/μ1), (iii) antioxidants - BHA, curcumin (40 μM), mixed gangliosides (20 nM) and protease inhibitor TLCK (100 μM). These compounds offered the following extents of protection to DNA against TDS: indomethacin-40%, NDGA-83%, DBAP-70%, SOD-38%, CAT-40%, BHA-38%, curcumin-60%, mixed gangliosides-88%, TLCK-85%. Against TPA as clastogenic agent, the extents of protection were: indomethacin-73%, NDGA-32%, DBAP-72%, SOD-60%, CAT, BHA-negligible, curcumin-23%, mixed gangliosides - 60%, TLCK - 59%. These results indicate that (i) TDS and TPA induce DNA damage possibly by different mechanisms, (ii) Aq.T is a more effective protectant against TDS whereas it is on par with other inhibitors against TPA.