Abstract
Electron microscopy shows that hyaluronan (HA) forms sheets and tube-like structures in solution. Molecular modelling by Tartu plastic space-filling atomic models revealed that hydroxymethyl and carboxylate groups of HA anti-parallel chains can be joined by H-bonds. Using these bonds, HA molecules can be modelled as sheets and tubules. These tertiary structures have three kinds of lateral contact: (1) antiparallel chains stacked by hydrophobic patches; (2) parallel chains joined by both stacking interactions and H-bonds; and (3) crossing chains joined by H-bonds and stacking interactions. Sheet and tubular structures may explain some viscoelastic and biological properties of HA.