In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae: Metabolic fluxes and metabolite levels
- 19 April 2001
- journal article
- research article
- Published by Wiley in Biotechnology & Bioengineering
- Vol. 73 (5) , 412-425
- https://doi.org/10.1002/bit.1075
Abstract
The dynamics of galactose metabolism in Saccharomyces cerevisiae was studied by analyzing the metabolic response of the CEN.PK 113‐7D wild‐type strain when exposed to a galactose pulse during aerobic growth in a galactose‐limited steady‐state cultivation at a dilution rate of 0.097 h−1. A fast sampling technique and subsequent methanol‐chloroform/solid phase extractions were applied for in vivo measurements of the dynamic changes of the AMP, ADP, ATP levels and the sugar phosphates of the Leloir pathway. The ATP level was found to be significantly lower for yeast growing under galactose limitation (0.37 ± 0.05 μmol/g CDW) than what has been reported for growth under glucose limitation. The galactose pulse of 5.58 mM was consumed within 40 min (t = 40) and 7 min after the pulse was added cell growth stopped. Subsequently, the cells started to grow and at t = 30 the specific growth rate had recovered to half the steady‐state growth rate (0.047 h−1). To evaluate the change in flux distribution at steady state and during the galactose transient, a stoichiometric model describing the aerobic metabolism of S. cerevisiae was set up for quantification of the metabolic fluxes. At t = 7 the flux entering the TCA cycle was low and acetate and ethanol started to be excreted to the extracellular medium. During recovery of cell growth the flux entering the TCA cycle increased again, and at t = 30 this flux exceeded the corresponding steady‐state flux. During the pulse an enhanced level of Gal‐1P was measured, which may be responsible for a toxic metabolic response in S. cerevisiae. The increase in the Gal‐1P concentration is intensified by the low affinity of Gal7 towards Gal‐1P and, hence, under the physiological conditions examined Gal7 seems to exert control over flux through the Leloir pathway. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 73: 412–425, 2001.Keywords
This publication has 34 references indexed in Scilit:
- Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functionsMicrobiology, 1998
- Flux Distributions in Anaerobic, Glucose-Limited Continuous Cultures of Saccharomyces CerevisiaeMicrobiology, 1997
- Acoustic off-gas analyser for bioreactors: Precision, accuracy and dynamics of detectionChemical Engineering Science, 1995
- In Vivo Analysis of Glucose-Induced Fast Changes in Yeast Adenine Nucleotide Pool Applying a Rapid Sampling TechniqueAnalytical Biochemistry, 1993
- Yeast Sugar TransportersCritical Reviews in Biochemistry and Molecular Biology, 1993
- Ssn6-Tup1 is a general repressor of transcription in yeastCell, 1992
- Physiology of Saccharomyces Cerevisiae in Anaerobic Glucose-Limited Chemostat CulturesxJournal of General Microbiology, 1990
- Interference with growth of certain Escherichia coli mutants by galactoseBiochimica et Biophysica Acta, 1958
- The Occurrence of a Group Transfer Involving Enzyme (phosphoglucomutase) and SubstrateScience, 1954
- Action de la phosphoglucomutase du muscle sur des acides aldose‐1‐phosphoriques. Transformation de l'acide galactose‐1‐phosphoriqueHelvetica Chimica Acta, 1954