Serum Amyloid A Secretion from Monocytic Leukaemia Cell Line THP‐1 and Cultured Human Peripheral Monocytes

Abstract
Serum amyloid A (SAA), an acute-phase protein and a precursor of fibrous components in reactive amyloid deposits, is synthesized mainly in the liver under the stimulation of inflammation-related cytokines. In addition, the SAA gene is expressed in monocytes/macrophages, which are believed to play a central role in amyloid fibrillogenesis. Consequently, the pathogenic implication of SAA produced from these cells has been of major concern. Because SAA synthesis at the protein level in such cells has never been analyzed quantitatively, in this study an enzyme-linked immunosorbent assay was generated with a detection level sufficiently high to measure SAA concentrations in the culture supernatants of the human monocytic leukaemia cell line THP-1. SAA secretion by THP-1 with interleukin (IL)-1beta required the presence of dexamethasone as proposed previously. We also found that unidentified components in fetal calf serum (FCS) could induce SAA production by THP-1 in the presence of dexamethasone. These findings are in contrast to the results obtained from hepatoma cell line HepG2, in which IL-1beta alone could induce SAA secretion, while dexamethasone-supplemented FCS could not. The method was able to quantify SAA secreted from cultured human peripheral monocytes. The findings suggest that monocytes produce SAA in almost the same manner as THP-1. Thus, THP-1 cells can be utilized to investigate a distinctive manner of SAA production from monocytes.