Sequence analysis of the Alcaligenes eutrophus chromosomally encoded ribulose bisphosphate carboxylase large and small subunit genes and their gene products
Open Access
- 1 October 1987
- journal article
- research article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 169 (10) , 4547-4558
- https://doi.org/10.1128/jb.169.10.4547-4558.1987
Abstract
The nucleotide sequence of the chromosomally encoded ribulose bisphosphate carboxylase/oxygenase (RuBPCase) large (rbcL) and small (rbcS) subunit genes of the hydrogen bacterium Alcaligenes eutrophus ATCC 17707 was determined. We found that the two coding regions are separated by a 47-base-pair intergenic region, and both genes are preceded by plausible ribosome-binding sites. Cotranscription of the rbcL and rbcS genes has been demonstrated previously. The rbcL and rbcS genes encode polypeptides of 487 and 135 amino acids, respectively. Both genes exhibited similar codon usage which was highly biased and different from that of other organisms. The N-terminal amino acid sequence of both subunit proteins was determined by Edman degradation. No processing of the rbcS protein was detected, while the rbcL protein underwent a posttranslational loss of formylmethionyl. The A. eutrophus rbcL and rbcS proteins exhibited 56.8 to 58.3% and 35.6 to 38.5% amino acid sequence homology, respectively, with the corresponding proteins from cyanobacteria, eucaryotic algae, and plants. The A. eutrophus and Rhodospirillum rubrum rbcL proteins were only about 32% homologous. The N- and C-terminal sequences of both the rbcL and the rbcS proteins were among the most divergent regions. Known or proposed active site residues in other rbcL proteins, including Lys, His, Arg, and Asp residues, were conserved in the A. eutrophus enzyme. The A. eutrophus rbcS protein, like those of cyanobacteria, lacks a 12-residue internal sequence that is found in plant RuBPCase. Comparison of hydropathy profiles and secondary structure predictions by the method described by Chou and Fasman (P. Y. Chou and G. D. Fasman, Adv. Enzymol. 47:45-148, 1978) revealed striking similarities between A. eutrophus RuBPCase and other hexadecameric enzymes. This suggests that folding of the polypeptide chains is similar. The observed sequence homologies were consistent with the notion that both the rbcL and rbcS genes of the chemoautotroph A. eutrophus and the thus far characterized rbc genes of photosynthetic organisms have a common origin. This suggests that both subunit genes have a very ancient origin. The role of quaternary structure as a determinant of the rate of accepted amino acid substitution was examined. It is proposed that the sequence of the dimeric R. rubrum RuBPCase may be less conserved because there are fewer structural constraints for this RuBPCase than there are for hexadecameric enzymes.This publication has 93 references indexed in Scilit:
- Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtiiJournal of Molecular Biology, 1986
- The active site of RubiscoPhilosophical Transactions of the Royal Society of London. B, Biological Sciences, 1986
- Inactivation of ribulose‐bisphosphate carboxylase by limited proteolysisFEBS Letters, 1986
- Assessment of secondary-structure prediction of proteins comparison of computerized chou-fasman method with othersBiochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1983
- Evolution of photoautotrophy and early atmospheric oxygen levelsPrecambrian Research, 1983
- Sequence of the chloroplast DNA region of Chlamydomonas reinhardii containing the gene of the large subunit of ribulose bisphosphate carboxylase and parts of its flanking genesJournal of Molecular Biology, 1982
- Relation between structure and function of α/β–protejnsQuarterly Reviews of Biophysics, 1980
- Modification of ribulose bisphosphate carboxylase from Rhodospirillumrubrum with tetranitromethaneBiochemical and Biophysical Research Communications, 1979
- Micro‐sequence analysis of peptides and proteins using 4‐NN‐dimethylaminoazobenzene 4′‐isothiocyanate/phenylisothiocyanate double coupling methodFEBS Letters, 1978
- Sequences of two active-site peptides from spinach ribulosebisphosphate carboxylase/oxygenaseBiochemical and Biophysical Research Communications, 1978