Magnetic breakdown in a normal-metal - superconductor proximity sandwich

Abstract
We study the magnetic response of a clean normal-metal slab of finite thickness in proximity with a bulk superconductor. We determine its free energy and identify two (meta-)stable states, a diamagnetic one where the applied field is effectively screened, and a second state, where the field penetrates the normal-metal layer. We present a complete characterization of the first order transition between the two states which occurs at the breakdown field, including its spinodals, the jump in the magnetization, and the latent heat. The bistable regime terminates at a critical temperature above which the sharp transition is replaced by a continuous cross-over. We compare the theory with experiments on normal-superconducting cylinders.