The structure and chemistry of the TiO2-rich surface of SrTiO3 (001)
Top Cited Papers
- 1 September 2002
- journal article
- Published by Springer Nature in Nature
- Vol. 419 (6902) , 55-58
- https://doi.org/10.1038/nature01010
Abstract
Oxide surfaces are important for applications in catalysis and thin film growth. An important frontier in solid-state inorganic chemistry is the prediction of the surface structure of an oxide. Comparatively little is known about atomic arrangements at oxide surfaces at present, and there has been considerable discussion concerning the forces that control such arrangements. For instance, one model suggests that the dominant factor is a reduction of Coulomb forces; another favours minimization of 'dangling bonds' by charge transfer to states below the Fermi energy. The surface structure and properties of SrTiO(3)--a standard model for oxides with a perovskite structure--have been studied extensively. Here we report a solution of the 2 x 1 SrTiO(3) (001) surface structure obtained through a combination of high-resolution electron microscopy and theoretical direct methods. Our results indicate that surface rearrangement of TiO(6-x) units into edge-sharing blocks determines the SrO-deficient surface structure of SrTiO(3). We suggest that this structural concept can be extended to perovskite surfaces in general.Keywords
This publication has 27 references indexed in Scilit:
- Surfaces of reduced and oxidizedfrom atomic force microscopyPhysical Review B, 1999
- c(6×2) and c(4×2) reconstruction of SrTiO3(001)Surface Science, 1999
- Structure change of TiO2-terminated SrTiO3(001) surfaces by annealing in O2 atmosphere and ultrahigh vacuumSurface Science, 1999
- SrTiO3(001)-c(6 × 2): a long-range, atomically ordered surface stable in oxygen and ambient airSurface Science, 1996
- Atomic Control of the SrTiO 3 Crystal SurfaceScience, 1994
- Reflection high-energy electron diffraction study on the SrTiO3 surface structurePhysica C: Superconductivity and its Applications, 1994
- STM-imaging of a SrTiO3(100) surface with atomic-scale resolutionSurface Science, 1992
- Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problemPhysical Review Letters, 1992
- Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001)Physical Review B, 1989
- Electronic study of SrTiO3(001) surfaces by photoemissionSurface Science, 1985