Acidiphily in pteridophytes: Assessment of the role of root cation‐exchange properties

Abstract
The soil preference with respect to soil acidity of Asplenium scolopendrium L., Dryopteris filix‐mas (L.) Schott, Pteridium aquilinum (L.) Kuhn as well as of subspecies of the Asplenium trichomanes L. and Polypodium vulgare L. complexes were studied in relation to root cation‐exchange properties. Data were collected for substrate acidity, soil exchangeable cations, and root cation‐exchange capacity. Acidiphilous pteridophytes were characterized by low cation‐exchange capacities. It is unlikely that cation‐exchange properties protect plants from potentially harmful cations such as aluminium or hydrogen, which are abundant under acid soil conditions, through immobilization. It is postulated that cation‐exchange properties are a secondary adaptation to soil acidity, in addition to major adaptations which determine the apparent soil preference. Possibly, a limited variation in cation‐exchange capacity as a function of soil conditions could prevent harmful interactions of soil exchangeable cations with the cation‐exchange sites, such as displacement of cell wall calcium by aluminium or hydrogen ions in acid soils.