Elasticity of the Rod-Shaped Gram-Negative Eubacteria

Abstract
We report a theoretical calculation of the elasticity of the peptidoglycan network, the only stress-bearing part of rod-shaped Gram-negative eubacteria. The peptidoglycan network consists of elastic peptides and inextensible glycan strands, and it has been proposed that the latter form zigzag filaments along the circumference of the cylindrical bacterial shell. The zigzag geometry of the glycan strands gives rise to nonlinear elastic behavior. The four elastic moduli of the peptidoglycan network depend on its stressed state. For a bacterium under physiological conditions the elasticity is proportional to the bacterial turgor pressure. Our results are in good agreement with recent measurements.